<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar/8821132433658259555?origin\x3dhttp://09s7huo.blogspot.com', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe", messageHandlersFilter: gapi.iframes.CROSS_ORIGIN_IFRAMES_FILTER, messageHandlers: { 'blogger-ping': function() {} } }); } }); </script>

Sunday, August 9, 2009

♥ Math entertainment!




Lyrics:

At first I was afraid, what could the answer be?
It said given this position find velocity.
So I tried to work it out, but I knew that I was wrong.
I struggled; I cried, "A problem shouldn't take this long!"
I tried to think, control my nerve.
It's evident that speed's tangential to that time-position curve.
This problem would be mine if I just knew that tangent line.
But what to do? Show me a sign!

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there's just one way to find that slope.
And so now I, I will derive.
Find the derivative of x position with respect to time.
It's as easy as can be, just have to take dx/dt.
I will derive, I will derive. Hey, hey!

And then I went ahead to the second part.
But as I looked at it I wasn't sure quite how to start.
It was asking for the time at which velocity
Was at a maximum, and I was thinking "Woe is me."
But then I thought, this much I know.
I've gotta find acceleration, set it equal to zero.
Now if I only knew what the function was for a.
I guess I'm gonna have to solve for it someway.

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there's just one way to find that slope.
And so now I, I will derive.
Find the derivative of velocity with respect to time.
It's as easy as can be, just have to take dv/dt.
I will derive, I will derive.

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there's just one way to find that slope.
And so now I, I will derive.
Find the derivative of x position with respect to time.
It's as easy as can be, just have to take dx/dt.
I will derive, I will derive, I will derive!

lovelove,
WQ :)

I AM GRUMPY.
2:15 PM


♥ theGrumpyToast ;



      theGrumpyToast is very grumpy. Beware, this toast bites.

      hwachong!
      ARTEMIS! <3
      09S7H!
      located at right wing!


♥ TagBoard



    The toast said TAG.

♥ Thank you

♥ theStaleToasts ;